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Abstract 
Solar’s	variable	generation	limits	its	contribution	to	reliably	meeting	peak	demand,	
or	its	resource	adequacy	contribution.	Energy	storage	is	a	leading	option	to	increase	
solar’s	resource	adequacy	contribution,	yet	the	contribution	from	different	
configurations	of	solar	and	storage	is	not	widely	understood.	We	develop	methods	
for	exploring	the	primary	drivers	of	an	estimate	of	the	resource	adequacy	
contribution	of	solar	and	storage,	and	we	apply	the	methods	to	a	case	study	in	
Florida,	where	demand	peaks	in	winter	and	summer.	We	find	that	the	portion	of	
solar	nameplate	capacity	that	contributes	to	resource	adequacy—its	capacity	
credit—is	less	than	50%	and	that	it	declines	with	increasing	solar	penetration.	The	
capacity	credit	of	storage,	even	though	it	is	fully	controllable	by	the	system	operator,	
strongly	depends	on	the	duration	of	storage.	The	capacity	credit	of	1	hour	of	storage	
can	be	less	than	the	capacity	credit	of	solar.		Achieving	a	90%	capacity	credit	
requires	at	least	4–5	hours	of	storage	when	storage	capacity	is	small	relative	to	the	
system	peak.	As	storage	deployment	increases	to	20%	of	the	peak	demand,	9	
hours—and sometimes more than 10 hours—of	storage	are	needed	to	achieve	a	90%	
capacity	credit.	Increased	solar	deployment	at	the	system	level	can	increase	
storage’s	capacity	credit.	Directly	pairing	solar	and	storage	can	also	impact	the	
capacity	credit.	Storage	with	a	power	rating	similar	to	the	solar	inverter	rating	loses	
capacity	credit	when	coupled	with	solar	if	its	duration	is	more	than	1–2	hours,	
because	storage	competes	with	solar	for	use	of	the	inverter.	On	the	other	hand,	
there	is	no	reduction	in	capacity	credit	when	the	storage	is	small	relative	to	the	solar	
inverter.	The	approach	and	tools	developed	here	for	exploratory	analysis	can	be	
useful	for	many	other	utilities	and	regions	grappling	with	similar	preliminary	
questions,	prior	to	evaluation	of	specific	cases	using	more	detailed	and	resource-
intensive	modeling.	
 
Key words: capacity credit; resource adequacy; solar; energy storage; pv; utility 
planning 
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1. Introduction 
The	contribution	of	solar	photovoltaics	(PV)	to	reliably	meeting	an	electric	power	
system’s	peak	demand—solar’s	resource	adequacy	contribution—is	limited	
owing	to	the	inherent	variability	in	generation	from	the	changing	position	of	the	sun	
along	with	passing	clouds.	Increasingly,	energy	storage	has	been	considered	a	
leading	option	to	improve	solar’s	resource	adequacy	contribution,	yet	the	
contribution	for	different	configurations	of	solar	and	storage	is	not	widely	
understood.	Further,	the	overall	capital	cost	of	storage	increases	with	longer	
durations	[1],	driving	systems	to	be	designed	with	durations	only	long	enough	
necessary	for	a	particular	application.	We	develop	methods	for	exploring	the	
primary	drivers	of	an	estimate	of	the	resource	adequacy	contribution	of	solar	and	
storage,	and	we	apply	the	methods	to	a	case	study	in	Florida,	where	demand	peaks	
in	the	winter	and	summer.	
	
The	contribution	of	different	technologies	to	resource	adequacy	is	important	for	two	
primary	reasons:	(1)	ensuring	that	a	power	system	is	reliable	requires	that	
sufficient	resources	are	available	to	meet	demand,	even	with	generation	outages	
and	variability	in	generation;	and	(2)	if	a	technology	contributes	to	resource	
adequacy,	then	it	can	displace	or	defer	the	need	to	build	other	resources	that	would	
otherwise	be	needed,	leading	to	economic	value.	We	refer	to	this	economic	value	as	
the	capacity	value	(in	monetary	terms),	whereas	we	refer	to	the	percentage	of	a	
generating	technology’s	nameplate	capacity	that	can	be	counted	toward	meeting	
resource	adequacy	requirements	as	the	capacity	credit	(CC).		
	
The	CC	of	energy	resources	is	particularly	important	in	long-term	utility	planning.	It	
can	be	one	of	the	key	assumptions	affecting	resource	selection	in	the	capacity-
expansion	models	frequently	used	in	integrated	resource	planning	[2]–[5].	The	
National	Renewable	Energy	Laboratory’s	(NREL’s)	Resource	Planning	Model	(RPM),	
for	example,	develops	a	CC	estimate	for	different	resources	to	find	least-cost	
portfolios	of	resources	that	meet	projected	grid	needs	[4]1.	This	model	is	currently	
used	to	quantitatively	evaluate	various	scenarios	associated	with	accelerating	the	
deployment	of	solar	and	storage	in	Florida	through	a	partnership	with	several	
municipal	utilities,	the	Florida	Office	of	Energy,	and	other	key	stakeholders	[7].	
	
The	limitations	on	solar’s	CC—due	to	variable	cloud	cover	and	the	timing	of	sunlight	
versus	the	timing	of	peak	power-system	demand—are	well	understood	[2],	[8]–
[14].	Probabilistic	methods	are	widely	accepted	as	an	accurate	way	to	calculate	the	
CC	of	solar	(and	wind),	with	several	approximation	methods	developed	to	reduce	
the	large	data	and	computational	needs	[15]–[17].	Also	understood	is	the	decline	in	
solar’s	CC	with	increasing	solar	penetration	on	the	grid,	as	the	net	peak	(system	
demand	minus	generation	supplied	by	variable	resources	such	as	solar)	shifts	into	

	
1	In	RPM,	conventional	resources	are	assumed	to	contribute	their	full	nameplate	capacity	toward	
meeting	planning	reserve	margins	[6].		
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hours	without	strong	sunlight	[2],	[18].	Many	detailed	evaluations	of	solar’s	CC	focus	
on	regions	that	have	their	highest	peaks	on	summer	afternoons	(e.g.,	much	of	the	
western	United	States),	but	solar’s	CC	is	smaller	in	regions	with	winter	night	peaks.	
Relatively	few	studies	focus	on	regions	with	a	dual-peaking	pattern,	where	summer	
cooling	loads	are	nearly	equivalent	to	winter	heating	loads.		
	
Understanding	is	much	more	limited	with	regard	to	the	factors	affecting	the	
reliability	contribution	of	energy	storage,	and	estimates	of	storage’s	CC	are	sparse	in	
the	literature.	Sioshansi	et	al.	[19]	use	probabilistic	methods	to	quantify	the	CC	of	
different	storage	durations	for	various	U.S.	utilities.	They	show	that	the	CC	of	long-
duration	storage	(8–10	hours)	approaches	100%,	while	short-duration	storage	(1–2	
hours)	achieves	only	about	half	that	value.	They	highlight	the	importance	of	
accounting	for	the	probability	of	subsequent	outages,	through	dynamic	
programming	techniques,	when	estimating	the	CC.	They	demonstrate	that	previous	
estimates	of	storage’s	CC	with	probabilistic	techniques	from	Tuohy	et	al.	[20]	do	not	
account	for	subsequent	outages	and	therefore	represent	maximum	estimates.	These	
studies	assume	storage	is	dispatched	to	maximize	its	arbitrage	value,	and	then	they	
evaluate	the	CC	associated	with	that	dispatch.	They	do	not	indicate	the	degree	to	
which	the	CC	could	be	increased	if	storage’s	dispatch	were	optimized	to	maximize	
CC.	Zhou	et	al.	[21]	develop	a	more	general	framework	for	evaluating	the	CC	of	
storage	and	demand-side	resources,	noting	the	interplay	between	energy	capacity	
and	power	capacity	in	determining	the	CC.	Nolan	et	al.	[22]	similarly	focus	on	
demand-side	resources	and	highlight	the	dependence	of	the	CC	on	the	
characteristics	of	customer	loads	and	timing	of	system-wide	peaks.	
	
Solar	and	storage	can	also	interact	to	affect	the	CC	of	both	technologies,	though	
these	interactions	have	only	been	studied	in	a	limited	number	of	regions.	Denholm	
et	al.	[23]	identify	a	declining	CC	of	storage	with	increasing	storage	deployment,	
because	the	remaining	load	peaks	become	wider	as	storage	clips	off	more	peaks.	
However,	they	show	that	high	solar	penetrations	in	California	can	narrow	net	load	
peaks	and	delay	the	decline	in	storage’s	CC.	Interactions	between	solar	and	storage	
using	probabilistic	reliability	techniques	have	also	been	investigated	in	Singapore	
[24]	and	Ontario,	Canada	[25].	Aside	from	peak	impacts,	solar	and	storage	also	
impact	net	load	ramps	[26].	Recent	studies	demonstrate	the	economic	value	
associated	with	flexible	solar	plant	operation	and	the	tradeoffs	relative	to	storage	
[27],	though	we	limit	our	focus	to	the	CC	and	do	not	investigate	the	implications	of	
these	operational	issues.		
	
We	expand	on	this	previous	literature	in	four	ways.	First,	we	focus	on	a	state	in	the	
Southeast,	a	region	with	a	growing	share	of	U.S.	solar	deployment	where	dual-
peaking	loads	are	common.	Second,	we	develop	a	method	for	finding	the	storage	
dispatch	that	maximizes	the	CC	as	defined	in	NREL’s	RPM.	Third,	we	evaluate	the	
impact	of	different	solar	+	storage	configurations	on	CC,	particularly	with	respect	to	
coupled	storage	and	PV.	Finally,	we	validate	the	method	for	approximating	the	CC	of	
resources	with	a	detailed	probabilistic	method.	
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The	approximation	method	used	here	is	convenient	for	easily	and	transparently	
evaluating	the	CC	of	solar	and	storage	under	many	different	possible	weather	years,	
combinations	of	hypothetical	sites	and	utilities,	and	system	configurations.	This	
approach,	which	is	validated	against	more	detailed	methods,	can	be	useful	
highlighting	general	directional	relationships	and	identifying	where	more	detailed	
analysis	is	warranted.	In	the	next	section,	we	describe	the	approximation	method	
used	within	RPM	to	estimate	CC	as	well	as	our	method	for	finding	a	storage	dispatch	
that	maximizes	storage’s	CC.	Section	3	describes	the	data	for	our	Florida	case	study.	
Section	4	presents	our	results,	including	the	drivers	of	solar’s	and	storage’s	CCs	
individually	as	well	as	the	impacts	of	combining	solar	and	storage.	We	also	validate	
our	approximation	method	relative	to	detailed	probabilistic	methods	and	evaluate	
the	importance	of	forecast	accuracy.	We	find	that	the	approximation	method	
provides	similar,	though	somewhat	higher,	estimates	of	the	CC	for	the	large	utilities	
but,	as	explained	further	in	Section	4,	overstates	the	CC	of	storage	for	a	small	utility	
with	relatively	large	generators.	We	conclude	in	Section	5	with	recommendations	
for	future	research.	

2. Methods 
Our	approach	enables	broad	exploration	of	the	many	factors	that	affect	solar	and	
storage	CCs,	rather	than	detailed	quantification	under	specific	configurations	or	
circumstances.	We	approximate	CCs	using	the	load	duration	curve	(LDC)	method	
employed	in	NREL’s	RPM	[4].	We	then	validate	this	approach	by	comparing	the	LDC	
approximation	with	CC	calculations	from	the	probabilistic	effective	load	carrying	
capability	(ELCC)	method.	

2.1 Load Duration Curve Method 
The	LDC	method	approximates	the	CC	of	a	variable	energy	or	energy-limited	
resource,	such	as	storage,	based	on	the	reduction	in	the	average	highest	peak	net	
load	hours	relative	to	the	average	highest	peak	load	hours.	The	calculation	method	
can	be	visualized	as	the	difference	between	an	LDC,	which	sorts	the	load	from	the	
highest	to	the	lowest	over	a	specified	period	such	as	a	year,	and	a	net	LDC	during	the	
peak	hours	(Figure	1).	The	net	LDC	is	created	by	first	reducing	the	hourly	load	by	
the	corresponding	generation	from	the	resource	in	the	same	hour	and	then	sorting	
the	resulting	net	load	from	highest	to	lowest.	Because	the	load	and	net	load	duration	
curves	are	sorted	independently,	the	gap	between	the	load	and	net	load	duration	
curves	represents	the	decrease	in	the	highest	net	load	hours,	irrespective	of	when	
they	occur.	This	method	can	therefore	capture	any	effects	where	deployment	of	a	
resource	leads	to	a	shift	in	the	time	of	day	that	the	net	load	peak	hours	occur.	In	the	
case	of	storage,	the	net	LDC	is	created	by	both	reducing	the	load	by	the	energy	
generation	from	discharging	storage	and	increasing	the	load	by	the	energy	required	
for	charging	storage.		
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a) b) 		
 
Figure	1.	Illustration	of	load	and	net	load	duration	curves	with	storage	for	all	hours	of	a	year	(a)	and	focusing	on	
just	the	peak	hours	of	a	year	(b). 

Because	of	the	influence	of	weather	on	CC,	we	calculate	the	CC	over	two	timeframes.		
For	the	majority	of	the	results	we	use	11	different	historical	years	and	calculate	the	
CC	separately	for	each	year.	This	way	we	are	able	to	see	how	sensitive	the	results	
are	to	the	choice	of	one	particular	year.	In	each	of	these	cases,	we	use	the	top	100	
hours	of	the	year	(the	top	1.1%	of	hours)	as	peak	hours.	We	also,	however,	calculate	
the	CC	using	all	hourly	data	across	11	years	at	once.	The	CC	using	all	hourly	data	
across	11	years	at	once	is	arguably	the	most	accurate	way	to	estimate	the	overall	
contribution	of	a	resource	toward	reliability.	Long	multi-year	datasets	are	not	
always	available,	however,	leading	to	individual	years	often	being	used	in	practice.	
This	11-year	CC	uses	the	top	1,100	hours	(also	the	top	1.1%	of	hours)	as	peak	hours. 

2.2 Storage Dispatch Model 
Though	the	LDC	method	can	approximate	the	CC	of	storage,	it	does	not	directly	
specify	the	dispatch	schedule	for	storage.	To	estimate	an	upper	bound	to	the	CC,	we	
develop	a	linear	model	whose	solution	maximizes	the	CC	of	storage,	where	the	CC	is	
defined	based	on	the	LDC	method.	The	approach	leverages	insights	from	the	
literature	on	optimizing	the	conditional	value	at	risk	(CVaR)	[28],	[29]	and	the	fact	
that	maximizing	the	CC	of	a	resource,	based	on	the	LDC	method,	is	equivalent	to	
minimizing	the	area	under	the	net	LDC	in	the	peak	net	load	hours.	Because	the	
resulting	optimization	model	is	linear,	it	can	be	solved	extremely	quickly,	even	when	
considering	11	years	of	hourly	data.	Additional	details	explaining	the	analogy	
between	the	CVaR	literature	and	the	model	for	maximizing	the	CC	of	a	resource	are	
provided	in	the	Appendix.	
	
An	energy	storage	system	is	characterized	by	its	nameplate	capacity	(MW),	its	
energy	capacity	(MWh),	and	its	roundtrip	efficiency.	We	assume	the	storage	system	
charges	and	discharges	at	rates	up	to	its	nameplate	capacity.	The	storage	duration	
(in	hours)	is	therefore	the	ratio	of	the	energy	capacity	to	the	nameplate	capacity.	
The	analysis	uses	hourly	time	steps—no	shorter	time	constraints	or	ramping	limits	
have	been	considered.	The	model	also	assumes	perfect	foresight	over	the	whole	
analysis	period.	
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Because	the	model	searches	for	an	optimal	storage	dispatch	profile,	the	hourly	
system	load	net	of	storage	generation	(the	net	load)	is	also	a	decision	variable	
obtained	from	the	model.	The	level	of	the	net	load	just	outside	of	the	peak	net	load	
hours,	NL*H+1,	is	especially	significant,	as	it	defines	the	area	of	the	net	LDC	that	when	
minimized	leads	to	the	storage	dispatch	with	the	maximum	CC.	More	details	about	
the	NL*H+1	variable	can	be	found	in	the	Appendix.	
	
The	calculation	details	are	as	follows:	

1. Indexes and Parameters 
h    Index for hours in the analysis, typically 8,760 hours for 1 year 
Lh    System load in hour h (MW) 
BpMax   Nameplate capacity of storage (MW) 
BlMax    Maximum level of storage (MWh) 
h   Roundtrip efficiency of storage (%) 
H   Number of peak hours 

2. Variables 
Boh    Discharge power from storage to the grid (MW) 
Bih   Charging power from the grid to storage (MW) 
Blh   Storage level (MWh) 
NLh   System net load in hour h (MW) 
NL*H+1   Net load in hour H+1 (a level chosen by the model) 
!" Continuous auxiliary variable equal to the maximum of [NLh-

NL*H+1] and 0 
#   De minimus auxiliary variable to ensure charging in off-peak hours2 

3. Objective Function 

min '()*+,
∗ +	1 12 	∗ 	 3 !"

4567

"8,

+ #9 

4. Operational Constraints 

Load and Net Load     ()" = )" + ;<" − ;>" 

Identify Peak Hours     !" ≥ ()" − ()*+,
∗ 	 

Ignore Net Load in Non-peak Hours   !" ≥ 0 

Storage Energy Balance     ;A" = ;A"B, + C ∙ ;<" − ;>" 

Maximum Storage Level    ;A"	 ≤ 	;AFGH 
	

2	To	account	for	the	storage	system’s	operation	beyond	peak	hours,	an	additional	term,	ϵ,	is	added	to	
the	objective	function,	ensuring	that	storage	is	charged	during	off-peak	hours.	This	term	has	a	very	
small	weight,	such	that	it	does	not	interfere	with	the	CC	calculation.	



Drivers of the Resource Adequacy Contribution of Solar and Storage for Florida Municipal Utilities │6	

Maximum Storage Production    0 ≤ ;>" ≤ 	;IFGH 

Maximum Storage Charge   0 ≤ ;<"	 ≤ 	;IFGH 

Prefer Charging in Off-peak Hours   # ≥ 10B4 ∗ ∑ )"(;<" − ;>")"  
 

2.3 Validation Against Probabilistic Benchmark 
We	compare	the	CC	calculated	with	the	LDC	method	versus	the	CC	calculated	as	the	
ELCC	using	the	probabilistic	approach	outlined	by	Keane	et	al.	[30].3	The	
probabilistic	benchmark	accounts	for	the	probability	that	random	forced	outages	at	
power	plants	will	lead	to	insufficient	generation	to	meet	demand,	as	quantified	by	
the	loss	of	load	probability	(LOLP).	Overall	reliability	is	then	measured	by	the	loss	of	
load	expectation	(LOLE),	which	accumulates	the	LOLP	over	all	hours.	The	ELCC	
represents	the	amount	that	the	demand	can	be	increased	after	a	resource	is	added	
to	the	generation	mix	while	maintaining	the	same	level	of	overall	reliability.	To	
validate	the	LDC	method	for	storage,	we	calculate	storage’s	ELCC	using	the	storage	
dispatch	profile	that	results	from	the	linear	storage	dispatch	model.		
 

2.4 Importance of Forecasting 
In	our	storage	dispatch	model,	we	assume	that	storage	can	be	dispatched	with	
perfect	foresight.	Though	this	is	not	feasible,	it	provides	an	upper	bound	to	the	
achievable	CC	as	defined	by	the	LDC	method.	We	find	a	lower	bound	by	
implementing	a	feasible,	though	naïve,	dispatch	strategy:	dispatch	the	storage	today	
based	on	the	optimal	dispatch	schedule	for	yesterday’s	load.	Clearly	this	naïve	
dispatch	strategy	could	be	improved	using	state-of-the-art	forecasting.	In	our	
analysis,	however,	it	simply	provides	a	lower	bound	that	can	be	calculated	without	
making	assumptions	about	forecasting	capabilities.		

3. Case Study Data and Assumptions  
An	advantage	of	the	LDC	method	is	that	it	requires	relatively	little	data,	only	the	load	
and	the	resource	generation	profile.	Our	case	study	quantifies	the	CC	of	solar	and	
storage	using	load	data	from	three	municipal	utilities:	JEA,	City	of	Tallahassee,	and	
the	Florida	Municipal	Power	Pool	(FMPP4).	Hourly	load	data	for	the	three	utilities	
were	obtained	from	ABB	Velocity	Suite	(based	on	Federal	Energy	Regulatory	
Commission	Form	714)	for	2006–2016.	Solar	generation	data	for	the	same	period	
were	generated	using	the	default	assumptions	in	NREL’s	PVWatts	model,	with	

	
3	The	level	of	reliability	based	on	the	generation	and	demand	can	change	from	year	to	year.	Similar	to	
the	approach	used	by	Madaeni	et	al	[10],	we	scale	the	load	levels	so	that	the	LOLPs	of	the	base	system	
in	each	year	sum	to	2.4	in	order	to	have	a	consistent	starting	point	for	determining	the	reliability	
contribution	of	solar	and	storage.		
4	FMPP	member	utilities	include	the	Orlando	Utilities	Commission,	Lakeland	Electric,	and	the	Florida	
Municipal	Power	Agency.	FMPP	operates	the	combined	resources	of	the	utilities	as	if	they	were	one	
utility.		
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historical	weather	data	sourced	from	the	National	Solar	Radiation	Database	for	
particular	hypothetical	PV	sites	located	near	each	utility	(Figure	2).	
	
For	the	probabilistic	benchmark,	we	also	require	the	nameplate	capacity	and	forced	
outage	rate	for	generators	associated	with	each	utility,	which	we	obtained	from	ABB	
Velocity	Suite	augmented	with	10-year	site	plans	filed	with	the	Florida	Public	
Service	Commission.	For	the	City	of	Tallahassee,	a	small	utility	with	two	relatively	
large	generators	and	a	limited	number	of	small	generators,	we	also	include	200	MW	
of	firm	capacity	based	on	transmission	capacity	between	the	City	of	Tallahassee	and	
resources	in	Georgia.	This	transmission	capacity	is	not	tied	to	any	one	generator,	but	
provides	the	City	of	Tallahassee	with	access	to	a	wide	variety	of	resources	at	times	
when	its	own	units	experience	forced	outages.	 
	
Throughout	the	analysis,	we	assume	storage	has	a	roundtrip	efficiency	of	85%.	
	
	

 
Figure	2.	Location	of	hypothetical	PV	sites	in	Florida.	

4. Results 
We	use	the	LDC	method	to	find	the	CC	of	solar,	storage,	and	different	configurations	
of	solar	+	storage.	We	then	validate	the	results	from	the	LDC	method	against	a	
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probabilistic	benchmark	and	find	a	lower	bound	to	the	CC	of	storage	associated	with	
forecast	errors.	The	following	are	our	key	results.	

4.1 Capacity Credit of Solar Varies by Utility and Weather Year 
Using	the	LDC	method,	we	find	that	solar’s	CC	varies	from	one	utility	to	another,	and	
it	varies	by	weather	year	(Figure	3a).	The	CC	of	solar	is	highest	(about	30%–50%	of	
nameplate	capacity)	when	using	the	hourly	load	shapes	from	FMPP	along	with	the	
solar	generation	patterns	from	hypothetical	sites	near	FMPP.	The	CC	is	somewhat	
lower	(about	20%–40%)	when	using	the	load	shapes	and	solar	generation	data	for	
JEA	and	the	City	of	Tallahassee.	The	primary	reason	for	the	higher	solar	CC	in	FMPP	
is	that	almost	all	of	the	peak	100	load	hours	occur	on	summer	afternoons,	whereas	
JEA	and	the	City	of	Tallahassee	also	have	peak	load	hours	during	winter	mornings	or	
nights	when	solar	generation	is	minimal	or	zero.	
	
Though	there	is	a	large	range	in	solar	CC	across	years,	only	a	few	particular	years	
drive	that	range.	The	CCs	calculated	using	the	full	11	years	of	data,	represented	by	
the	colored	dots	in	Figure	3a,	are	close	to	the	medians	of	the	CCs	calculated	from	
each	year	individually.	In	addition,	the	CC	varies	very	little	with	the	choice	of	
hypothetical	sites	within	the	relatively	small	footprint	of	the	utilities.5	As	such,	for	
the	remainder	of	this	analysis,	we	present	results	from	only	one	PV	site	within	each	
utility.	We	also	focus	the	rest	of	our	analysis	on	a	single	weather	year,	2012,	because	
this	is	the	weather	year	used	in	the	current	version	of	RPM	for	all	demand,	wind,	
and	solar	shapes.	The	2012	weather	year	yields	CC	estimates	that	are	close	to	the	
medians	across	all	11	years	(Figure	3b).	
	

a) b)  
 
Figure	3.	Variability	in	solar	CC	across	each	of	the	11	weather	years	and	5	PV	sites	compared	to	the	solar	
CC	from	the	full	11	years	of	data	(a)	and	comparison	of	the	CC	from	the	2012	weather	year	to	all	other	
years	for	the	one	representative	PV	site	(b).	

	
The	CCs	of	solar	calculated	with	the	LDC	method	are	within	the	range	of	solar	CCs,	at	
low	penetrations,	reported	in	other	studies	or	assumed	in	utility	planning	studies,	

	
5	We	also	find	that	geographic	diversity	within	the	region	around	the	utilities	does	not	significantly	
impact	the	solar	CC.	We	conducted	a	simple	experiment	where	the	CCs	of	hypothetical	sites	were	
estimated	individually	then	compared	to	the	CC	of	a	similar	amount	of	aggregate	PV	distributed	
across	multiple	sites.	The	aggregate	CC	was	not	noticeably	greater	than	the	average	of	the	individual	
site	CCs.	Geographic	diversity	can,	however,	help	mitigate	sub-hourly	variability	even	for	sites	within	
a	utility	service	territory	[31],	[32].	
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though	at	the	lower	end	[2],	[12].	The	LDC	method	yields	a	solar	CC	that	is	
somewhat	lower	than	the	54%	CC	assigned	to	solar	by	a	major	investor-owned	
utility,	Florida	Power	&	Light	(FPL),	in	its	cost-effectiveness	evaluation.	FPL	
estimates	the	CC	based	on	the	expected	solar	generation	during	the	typical	peak	
demand	periods	of	4-5pm	in	August.	FPL	also	estimates	CC	for	the	winter	period,	
based	on	generation	between	7-8am	in	January,	finding	little	contribution	to	
reliability	in	this	period	because	the	winter	peak	occurs	when	solar	generation	is	
low.	Because	the	peak	is	higher	in	summer	than	in	winter,	FPL	finds	that	solar	can	
defer	the	need	to	build	new	capacity	commensurate	with	solar’s	summer	CC	[33].6	

4.2 Capacity Credit of Solar Declines with Increasing Solar Deployment  
Consistent	with	findings	in	the	literature,	solar’s	CC	based	on	the	LDC	method	
declines	with	increasing	solar	deployment	(Figure	4),	primarily	because	more	solar	
shifts	the	peak	net	load	hours	away	from	summer	daytime	hours	and	into	early	
evening	hours	in	the	summer	or	early	morning	hours	in	the	winter.	Adding	solar	
does	little	to	reduce	the	peak	net	load	in	these	hours,	thereby	lowering	solar’s	CC.	
This	trend	is	consistent	across	the	three	utilities.	By	the	time	solar	deployment	has	
increased	to	generate	enough	energy	to	meet	15%	of	annual	sales,	the	average	CCs	
are	less	than	half	of	the	CCs	at	very	low	deployment	levels.	The	reduction	in	solar	CC	
with	higher	deployment	is	helping	to	drive	interest	in	solutions	that	ensure	
resources	are	adequate	to	meet	demand,	including	adding	storage.		
	

 
Figure	4.	Declining	average	CC	of	solar	with	increasing	solar	deployment.	

	
	

	
6	The	FPL	example	also	highlights	that	utilities	often	calculate	a	summer	and	winter	capacity	
contribution	of	resources.	The	RPM	model,	on	the	other	hand,	only	uses	a	single	value	for	the	CC	
which	is	based	on	the	highest	peak	hours	across	the	entire	year.	Here	we	similarly	present	only	the	
CC	calculated	using	all	hours	of	the	year	rather	than	partitioning	the	year	by	season.		
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4.3 Capacity Credit of Storage Depends on the Storage Duration and Declines 
with Increasing Storage Deployment 

In	contrast	to	solar,	which	has	weather-dependent	generation,	storage	is	viewed	as	
more	reliable	owing	to	its	dispatchable	nature.	We	find,	however,	that	the	fraction	of	
storage’s	nameplate	power	rating	that	contributes	to	resource	adequacy	(i.e.,	
storage’s	CC)	is	highly	dependent	on	the	duration	of	storage,	which	is	based	on	the	
ratio	of	the	energy	capacity	to	the	power	rating.	With	too	few	hours	of	energy,	
storage	cannot	continuously	reduce	the	peak	net	load	hours	on	days	with	high,	
broad	peaks.	On	these	days,	storage	is	more	likely	to	be	depleted	when	reducing	
peak	load,	leaving	it	unavailable	for	discharge	during	other	peak	hours.	The	impact	
of	storage	duration	on	storage’s	ability	to	reduce	winter	and	summer	peak	load	
hours	is	illustrated	in	Figure	5.	In	this	illustration,	1	hour	of	storage	is	insufficient	to	
reduce	winter	or	summer	peaks,	4	hours	is	more	effective	in	reducing	the	narrow	
winter	peak	and	less	effective	for	the	broader	summer	peak,	and	6	hours	is	effective	
in	both	winter	and	summer.	This	is	just	an	illustration—the	duration	of	summer	and	
winter	peaks	varies	from	year-to-year	and	between	utilities.		
	
Also	apparent	in	Figure	5	is	that,	for	storage	to	continue	reducing	peak	loads,	
broader	and	broader	peaks	must	be	clipped	as	more	and	more	storage	is	deployed.	
Conversely,	for	the	same	hours	of	storage,	the	average	storage	CC	is	reduced	as	
more	and	more	storage	is	deployed.	Figure	6	illustrates	both	the	relationship	
between	storage	CC	and	hours	of	storage	as	well	as	the	declining	storage	CC	with	
increasing	storage	deployment,	as	calculated	with	the	LDC	method.	Here	the	
nameplate	capacity	is	0.3%	of	the	peak	load	(low	storage	penetration	requiring	
about	2–10	MW	of	storage	depending	on	the	utility)	or	20%	of	the	peak	load	(high	
storage	penetration	requiring	about	120–600	MW	of	storage).	
	
Across the three utilities, storage’s CC, even though it is fully controllable by the system 
operator, depends strongly on the storage duration. Achieving a 90% CC requires at least 
4–5 hours of storage at low storage penetration, when storage capacity is small relative to 
the system peak. As storage deployment increases to 20% of the peak demand, 9 hours—
and sometimes more than 10 hours—of storage are needed to achieve a 90% CC. These 
findings, based on the LDC method for calculating CC, are in line with previous 
estimates based on more detailed probabilistic methods (e.g., [19]).	
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Figure	5.	Load	and	net	load	(load	less	storage	generation)	for	a	peak	winter	and	summer	day	with	
varying	storage	reservoir	sizes.	

	

	
Figure	6.	Dependence	of	storage	CC	on	storage	duration,	declining	CC	with	increasing	storage	
deployment.	

4.4 Capacity Credit of Storage Can Vary with Weather Year 
Because storage’s CC depends on load shape, it can vary from year to year. Based on the 
findings in Section 4.3, storage with a given duration is more likely to have a higher CC 
in years with narrower peaks, while achieving a high CC in years with broader peaks 
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requires longer-duration storage. As Figure	7 shows, for FMPP, the variation in storage 
CC with weather year is largest for medium-duration storage (3–5 hours). For short-
duration storage (1 hour), the CC is small across all weather years. For long-duration 
storage (10 hours), the CC is close to 100% in almost all weather years. Overall, the 
variation in storage CC with weather years (Figure	7) is somewhat smaller than the 
variation in solar CC for FMPP (Figure	3). Qualitatively similar patterns were observed 
for the variation in storage CC using the other utility load shapes. 
 

 
Figure	7.	Variation	in	storage	CC	by	weather	year	and	storage	duration,	for	100	MW	of	storage	in	FMPP.	

4.5 Capacity Credit of Storage Depends on System-Level Solar Deployment  
Seeing	the	dependence	of	storage	CC	on	the	width	of	peaks,	we	expect	the	storage	
CC	to	change	as	net	load	peaks	narrow	with	increasing	solar	deployment.	To	test	
this,	we	compare	the	decline	in	storage	CC	with	increasing	deployment	of	4-hour	
storage	under	a	case	with	no	system-wide	solar	and	a	case	with	as	much	as	15%	of	
the	annual	energy	being	met	by	solar	(Figure	8).	
	

 

Figure	8.	Impact	of	system-wide	solar	deployment	on	storage	CC,	4-hour	duration	storage.	
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The	CC	of	4-hour	storage	is	greater	with	system-wide	deployment	of	solar	than	
without	solar,	though	the	storage	CC	still	declines	with	increasing	storage	
deployment.	The	increase	in	4-hour	storage	CC	with	system-wide	solar	deployment	
is	greatest	for	FMPP,	the	utility	with	a	load	shape	that	peaks	only	in	the	summer	and	
therefore	likely	sees	the	greatest	change	in	peak	net	load	shape	with	solar.	The	
effect	is	smaller	for	the	two	utilities	(JEA	and	the	City	of	Tallahassee)	that	tend	to	
have	some	peak	load	hours	in	winter	mornings	or	late	winter	nights.	
	
For	storage	with	a	duration	shorter	or	longer	than	4	hours,	the	storage	CC	follows	a	
similar	declining	trend	with	increased	deployment	of	storage,	though	with	some	
differences.	For	shorter	duration	storage,	the	storage	CC	begins	at	a	lower	level,	
hence	the	decline	with	increasing	storage	deployment	appears	flatter.	For	longer	
duration	storage,	the	storage	CC	begins	at	a	level	closer	to	100%	CC	and	maintains	
that	level	before	beginning	to	decline	as	storage	deployment	increase.	
	
Here	we	present	only	the	incremental	CC	of	storage	with	and	without	large	shares	
on	solar	on	the	system.	Storage	deployment	can	also	increase	solar’s	CC	at	high	solar	
penetrations,	though	we	do	not	show	that	here.	The	interaction	between	the	CCs	of	
storage	and	solar	demonstrates	a	synergy	that	may	be	important	to	capture	in	
capacity-expansion	models.	In	the	next	section,	we	analyze	the	CC	of	solar	+	storage	
facilities,	though	only	at	low	penetration.	We	leave	further	investigation	of	synergies	
at	very	high	penetrations	of	solar	and	storage	to	future	studies.		

4.6 Solar + Storage Configuration Affects Capacity Credit  
Increasingly,	storage	is	considered	as	a	resource	that	can	be	combined	with	solar	to	
create	a	dispatchable	resource	similar	to	concentrating	solar	power	with	thermal	
storage	[34].	Though	there	are	many	factors	to	consider	when	sizing	storage	and	
solar	and	deciding	on	the	configuration,	we	focus	solely	on	the	implications	for	the	
CC	of	solar	+	storage.	
	
The	factors	that	can	be	adjusted	when	designing	a	solar	+	storage	system	include	the	
number	of	hours	of	storage,	the	storage	power	capacity	relative	to	the	PV	module	
capacity,	the	ratio	of	the	inverter	capacity	to	the	PV	module	capacity,	whether	the	
solar	and	storage	are	independent	(alternating	current	[AC]	coupled)	or	share	an	
inverter	(direct	current	[DC]	coupled),	and	whether	the	storage	can	charge	from	the	
grid	or	solar	(loosely	coupled)	or	whether	it	can	only	charge	from	solar	(tightly	
coupled).7	One	reason	to	model	a	restriction	under	which	storage	can	only	charge	
with	solar	power	relates	to	tax	credit	policy.	Currently,	storage	can	qualify	for	the	
U.S.	federal	Investment	Tax	Credit	(ITC)	that	is	available	for	solar	plants	if	the	
storage	charges	from	solar	at	least	75%	of	the	time.	We	consider	the	implications	on	
solar	+	storage	CC	by	comparing	results	for	the	extreme	case	in	which	storage	is	
only	charged	from	solar	or	it	can	be	charged	from	either	the	grid	or	solar	(Table	1).	
In	all	coupled	cases,	we	assume	that	the	ratio	of	the	inverter	capacity	to	the	PV	

	
7	We	follow	the	naming	convention	for	this	configuration	as	described	by	Denholm	et	al.	[35]		
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module	capacity	is	kept	constant,	rather	than	changing	the	inverter	size	as	storage	is	
added.		
	
Table	1.	Definition	of	Analyzed	Solar	+	Storage	Configurations	

Configuration Description Share 
Equipment? 

Source of 
Electricity 
for 
Storage 

Independent PV and storage do not share 
equipment, and storage is charged 
from the grid. 

No Grid 

Loosely Coupled PV and storage both connect on the 
DC side of shared inverters, but 
storage can charge from storage or 
the grid. 

Shared 
inverter 

Grid or PV 

Tightly Coupled PV and storage connect on the DC 
side of shared inverters, and storage 
can only charge from PV. 

Shared 
inverter 

Only PV 

	
In	the	independent	case,	the	CC	of	a	solar	+	storage	system	is	equivalent	to	the	sum	
of	the	CC	of	solar	alone	and	the	CC	of	storage	alone.	When	coupling	solar	and	storage	
together	with	a	shared	inverter,	the	CC	can	be	less	than	the	sum	of	the	individual	
CCs	if	the	shared	inverter	limits	the	joint	production	of	solar	and	storage	or,	in	the	
case	of	the	tightly	coupled	system,	the	solar	is	insufficient	to	fully	recharge	the	
storage	before	the	next	system	peak.	
	
Using	JEA	load	and	solar	data	for	2012	along	with	the	assumption	that	storage	and	
PV	both	have	a	nameplate	capacity	of	100	MW,	we	find	examples	in	which	a	coupled	
solar	+	storage	system	can	have	a	CC	less	than	the	CC	of	an	independent	system	or	
even	less	than	the	CC	of	storage	alone	(Figure	9a).	In	this	particular	case,	the	CC	of	
solar	+	storage	is	not	impacted	by	configuration	for	short-duration	storage	(1	hour).	
Increasing	the	duration,	however,	produces	a	gap	between	the	CCs	of	independent	
and	coupled	systems.	The	CC	of	the	loosely	coupled	solar	+	storage	system	is	limited	
by	the	capacity	of	the	shared	inverter.	Requiring	storage	to	only	charge	from	solar	
(tightly	coupled)	further	restricts	the	CC;	at	6	hours	of	storage	and	above,	the	CC	of	
the	tightly	coupled	solar	+	storage	system	is	less	than	the	CC	of	storage	alone	(which	
can	charge	from	the	grid	during	off-peak	hours).	Similar	behavior	is	observed	with	
the	FMPP	load	and	solar	data,	but	with	less	difference	between	the	CC	of	the	tightly	
and	loosely	coupled	configurations	and	the	CC	of	solar	+	storage	is	never	less	than	
the	CC	of	storage	alone	(Figure	9b).	The	reason	the	solar	+	storage	CC	is	less	
impacted	by	restricting	charging	to	solar	in	FMPP	than	in	JEA	may	be	that	FMPP	
peak	hours	all	occur	in	the	summer,	when	solar	production	is	greater	and	more	
consistent,	while	some	of	the	JEA	peak	hours	occur	in	the	winter,	when	solar	
production	is	lower.	In	addition,	the	duration	of	peaks	is	wider	for	JEA	than	for	
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FMPP;	wider	peaks	require	more	energy,	which	is	limited	by	solar	generation	in	the	
tightly	coupled	case.	
	

a) b)  
Figure	9.	Variation	in	solar	+	storage	CC	with	different	configurations	with	100	MW	storage	and	100	MW	
of	solar	using	(a)	JEA	and	(b)	FMPP	load	and	solar	profiles	from	2012.	

We	find	that	if	the	storage	size	is	reduced	to	only	20%	of	the	solar	nameplate	
capacity,	the	CC	of	solar	+	storage	is	nearly	equivalent	across	the	independent,	
loosely	coupled	and	tightly	coupled	configurations.	With	storage	sized	well	below	
the	inverter	capacity,	and	the	CC	of	solar	less	than	50%	of	its	nameplate	capacity,	
there	are	few	opportunities	for	storage	and	solar	to	compete	for	limited	inverter	
capacity.	Likewise,	in	the	tightly	coupled	case,	a	much	smaller	amount	of	solar	is	
required	to	charge	the	smaller	storage	system,	making	storage	easier	to	charge	only	
with	solar	energy.		
	
Even	if	storage	and	solar	are	equally	sized,	it	may	be	possible	to	achieve	the	same	
(or	similar)	CC	with	a	coupled	system	as	with	an	independent	system	if	the	inverter	
capacity	is	increased	in	the	coupled	system.	This	increases	the	cost	of	the	coupled	
system,	but	it	may	be	worth	the	cost	if	reliability	is	a	high	priority	for	the	utility.	The	
requirement	to	only	charge	storage	from	solar	in	the	tightly	coupled	case	may	
continue	to	be	a	limiting	factor.	

4.7 Capacity Credit Calculated with LDC Method is Consistent with 
Probabilistic Benchmark Except for Very Small Utilities 

As	mentioned	in	the	Introduction,	the	LDC	method	is	convenient	for	easily	and	
transparently	evaluating	the	CC	of	solar	and	storage	under	many	different	possible	
weather	years,	combinations	of	hypothetical	sites	and	utilities,	and	system	
configurations.	To	be	useful	in	decision	making,	however,	it	should	also	yield	
reliability	estimates	similar	to	those	derived	from	a	more	detailed	evaluation	with	
probabilistic	reliability	methods.	Here	we	validate	the	approximation	by	comparing	
the	CC	estimated	with	the	LDC	method	to	the	ELCC	calculated	with	a	probabilistic	
method	(Figure	10).	We	develop	storage	dispatch	profiles	such	that	they	maximize	
storage	CC	under	the	LDC	method,	and	then	we	apply	those	profiles	in	the	ELCC	
calculation.	In	both	methods,	we	use	the	same	solar,	load,	and	storage	dispatch	data.	
The	only	additional	information	used	in	the	probabilistic	method	is	the	capacity	and	
forced	outage	rate	of	the	conventional	generation	operated	by	the	utilities.		
	

JEA	 FMPP	



Drivers of the Resource Adequacy Contribution of Solar and Storage for Florida Municipal Utilities │16	

For	the	two	larger	utilities	with	peak	demand	over	3	GW	(JEA	and	FMPP),	the	CC	
with	LDC	method	is	directionally	consistent	and	quantitatively	similar	to	the	ELCC	
calculated	with	the	probabilistic	methods	for	solar	and	storage.	For	these	two	
utilities,	the	main	difference	is	that	the	LDC	method	tends	to	overestimate	the	CC	of	
solar	and	storage,	particularly	for	longer	durations.	Even	for	the	small	utility	with	a	
peak	demand	of	less	than	1	GW	(City	of	Tallahassee),	the	solar	CC	with	the	LDC	
method	is	somewhat	similar	to,	though	slightly	higher	than,	the	ELCC.		
	
On	the	other	hand,	for	the	small	utility	(City	of	Tallahassee),	the	CC	of	storage	
estimated	with	the	LDC	method	is	much	greater	than	the	ELCC.	This	starkly	different	
result	stems	from	the	small	number	of	conventional	generating	stations	operated	by	
Tallahassee,	with	some	relatively	large	compared	to	the	load,	which	leads	to	a	
widely	distributed	risk	of	outages	(or	a	widely	distributed	LOLP).	Whereas	the	risk	
is	concentrated	in	less	than	about	0.5%	of	the	hours	for	JEA	and	FMPP,	Tallahassee’s	
risk	is	distributed	over	about	17%	of	the	year.8	As	a	result,	short-duration	storage	
makes	a	much	smaller	contribution	to	increasing	the	overall	system	reliability	for	
the	City	of	Tallahassee	compared	to	the	contribution	of	storage	in	JEA	and	FMPP.		
	
Though	the	deviation	between	the	CC	estimated	with	the	LDC	method	and	the	ELCC	
for	the	City	of	Tallahassee	is	important	to	understand,	we	consider	this	to	be	a	rare	
failure	of	the	approximation	rather	than	a	common	occurrence.	Few	utilities	are	as	
small	as	the	City	of	Tallahassee,	and	even	among	small	utilities	it	is	rare	to	find	
individual	generators	that	constitute	such	a	large	fraction	of	the	total	capacity.	More	
generally,	since	we	largely	treat	each	utility	as	an	island,	we	do	not	model	several	
factors	that	could	be	important	in	determining	the	true	risk	profile	for	utilities	
including	the	potential	to	access	generation	over	other	transmission	lines	and	to	
leverage	shared	reserves	for	short-term	events.	Probabilistic	methods	that	can	
account	for	transmission	capacity	to	neighboring	utilities	exist	[36],	[37],	though	we	
do	not	consider	those	approaches	in	this	simple	validation.	
	

	
8	We	measure	the	concentration	of	the	risk	of	outages	as	the	percentage	of	hours	in	which	the	LOLP	

is	greater	than	5%	of	the	maximum	LOLP.	A	smaller	percentage	of	hours	in	which	the	LOLP	is	greater	
than	5%	of	the	maximum	indicates	that	the	risk	of	outage	is	more	concentrated	in	peak	hours.		
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Figure	10.	Comparison	of	the	CC	estimated	with	the	LDC	method	to	the	ELCC	calculated	with	a	
probabilistic	method.	

4.8 Forecasting Matters for Storage Capacity Credit, Particularly with Small 
Storage Reservoirs 

Throughout	the	preceding	analysis,	we	estimate	an	upper	bound	to	storage’s	CC	
with	the	LDC	method	assuming	that	demand	could	be	perfectly	forecast.	In	reality,	
storage	dispatch	will	depend	on	many	factors,	including	how	well	peak	periods	are	
forecasted.	A	lower	bound	to	the	storage	CC	can	be	established	by	assuming	that	the	
schedule	based	on	the	previous	day’s	observations	is	implemented	in	the	current	
operating	day.	This	naïve	“day-ahead	persistence”	dispatch	approach	is	practicable,	
though	it	should	be	easy	to	improve	by	considering	information	like	weather	
forecasts	in	the	dispatch	development.	
	
We	find	that	the	impact	of	forecasts	on	storage	CC	is	more	important	for	shorter-
duration	storage	than	for	longer	duration-storage.	We	illustrate	this	in	Figure	11	by	
showing	the	fraction	of	the	perfect	foresight	CC	achieved	with	storage	dispatched	
with	day-ahead	persistence.	With	1-hour	storage,	for	example,	the	optimal	storage	
schedule	with	perfect	foresight	often	results	in	storage	being	fully	discharged	in	the	
peak	hour.	If,	however,	the	peak	hour	in	the	previous	day	shifts	by	as	little	as	an	
hour	during	the	operating	day,	the	contribution	of	storage	to	meeting	peak	hours	
could	be	greatly	diminished.	With	4	hours	of	storage,	however,	the	dispatch	often	
discharges	the	storage	over	the	highest	4	hours	of	a	day.	Even	if	the	peak	shifts	by	1	
hour	from	one	day	to	the	next,	the	storage	dispatch	profile	is	much	more	likely	to	
reduce	demand	in	that	hour.	Forecasting	is	particularly	important	for	a	small	utility	
(the	City	of	Tallahassee)	with	variable	peak	hours.		
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Figure	11.	Importance	of	forecasting	to	the	CC	of	storage.	

5. Conclusions 
Many	factors	impact	the	CC	of	solar	and	storage,	including	weather,	utility	demand	
profiles,	solar	and	storage	deployment	levels,	and	the	configuration	of	solar	and	
storage	systems.	Exploratory	analysis	of	the	relative	importance	of	different	factors	
can	be	useful	before	evaluating	specific	cases	via	more	detailed	and	resource-
intensive	modeling.	We	have	developed	and	demonstrated	a	fast	and	relatively	
simple	algorithm	for	identifying	the	dispatch	that	maximizes	the	CC	of	storage	and	
solar,	suitable	for	such	exploratory	analysis.	
	
Applying	this	approach	to	a	case	study	in	Florida,	we	find	that	storage’s	CC—even	
though	it	is	fully	controllable	by	the	system	operator—strongly	depends	on	the	
storage	duration.		Achieving	a	90%	CC	requires	at	least	4–5	hours	of	storage	when	
storage	capacity	is	small	relative	to	the	system	peak.	As	with	solar,	the	CC	of	storage	
can	vary	with	weather	year,	though	it	is	somewhat	less	sensitive	to	year-to-year	
variations,	and	the	variability	tends	to	be	largest	with	moderate	storage	durations	
(e.g.,	3–5	hours).	As	storage	deployment	increases	to	20%	of	the	peak	demand,	9	
hours—and sometimes more than 10 hours—of	storage	are	needed	to	achieve	a	90%	
CC.	Or	from	another	perspective,	the	CC	of	storage	with	the	same	duration	will	
decline	with	increasing	storage	deployment.		
	
Increased	solar	deployment	at	the	system	level	can	increase	the	CC	of	4	hours	of	
storage.	Directly	pairing	solar	and	storage	can	also	impact	the	CC.	Storage	with	a	
power	rating	similar	to	the	solar	inverter	rating	loses	CC	when	coupled	with	solar	if	
its	duration	is	more	than	1–2	hours,	because	storage	competes	with	solar	for	use	of	
the	inverter.	Restricting	storage	to	only	charge	with	solar	can	reduce	the	CC	of	a	
solar	+	storage	system,	sometimes	to	the	point	that	it	becomes	smaller	than	the	CC	
of	storage	alone.	On	the	other	hand,	there	is	no	reduction	in	CC	when	the	storage	is	
small	relative	to	the	solar	inverter.	
	
Several	directions	for	future	work	emerge	from	this	analysis.	First,	the	optimal	
configuration	of	solar	and	storage	depends	on	much	more	than	maximizing	the	
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resource	adequacy	contribution	[35].	Storage	might	reduce	solar’s	levelized	cost	of	
energy,	especially	when	the	PV	panels	are	oversized	relative	to	the	inverter,	by	
charging	coupled	storage	using	energy	that	would	otherwise	be	clipped.	Storage	can	
also	provide	additional	value	streams	beyond	the	capacity	value,	including	energy	
value	and	ancillary	services.	It	can	also	smooth	the	solar	production	profile	due	to	
passing	clouds.	Future	analysis	could	investigate	how	the	different	uses	of	storage	
alter	the	optimal	solar	+	storage	configuration	and	whether	any	of	these	other	
factors	affect	the	CC.	Second,	we	see	evidence	of	synergy,	with	high	solar	
penetrations	increasing	storage’s	CC	and	high	storage	penetrations	increasing	
solar’s	CC.	This	synergy	may	be	important	to	capture	in	capacity-expansion	models.	
Finally,	our	CC	approximations	appear	to	mimic	results	from	more	detailed	
probabilistic	methods,	except	for	a	very	small	utility	with	relatively	large	generators	
and	widely	distributed	high-risk	hours.	Additional	analysis	could	more	broadly	
investigate	the	circumstances	that	cause	the	approximations	to	deviate	from	the	
probabilistic	results.	
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Appendix  
Storage	CC	estimation	strongly	depends	on	the	storage	dispatch,	that	is,	the	
decisions	about	when	and	how	much	batteries	or	other	storage	systems	are	charged	
and	discharged.	There	are	many	ways	in	which	storage	can	be	operated	depending	
on	the	target	the	operator	has	in	mind.	Typically,	the	dispatch	is	decided	by	means	
of	a	linear	model	that	minimizes	system	operation	cost	[20]	or	maximizes	benefits	
during	a	certain	time	scope	[38].	However,	to	our	knowledge,	there	is	no	developed	
method	to	optimize	the	operation	of	batteries	during	a	specific	time	scope	in	order	
to	maximize	the	CC.	We	develop	a	model	based	on	linear	programming	that	can	
maximize	the	CC	provided	by	a	storage	facility.	
	
Because	the	proposed	model	is	only	focused	on	the	operation	of	the	storage	to	
maximize	the	CC,	additional	generators	and	their	costs	and	operating	constraints	
are	not	modeled.	The	system	as	a	whole	is	defined	through	an	hourly	load	curve	and	
a	certain	storage	capacity.	The	time	scope	is	a	year,	with	hourly	detail;	that	is,	the	
decision	variables	are	the	charge	and	discharge	of	the	batteries	for	each	hour	of	the	
year.	Chronology	is	considered	in	the	model	using	historic	load	curves.	This	
chronology	provides	realistic	storage	operation	decisions.	
	
The	model	uses	a	novel	application	of	the	conditional	value	at	risk	(CVaR)	
optimization	algorithm,	first	developed	for	finance	applications,	to	solve	the	CC	
maximization	for	storage.	Hence,	we	first	review	the	basics	of	the	CVaR	optimization	
formulation,	before	introducing	its	adaptation	to	CC	maximization.	

CVaR Optimization Formulation 

In	mathematical	finance	theory,	one	of	the	most	widely	used	coherent	measures	of	
risk	is	the	so-called	CVaR	index	[28].	The	VaR	(value	at	risk)	calculates	the	losses	of	
an	investment	portfolio	with	a	specified	probability.	For	example,	the	losses	of	an	
investment	will	have	a	5%	probability	of	being	higher	than	the	VaR	at	95%.	The	
CVaR	at	95%	represents	the	average	losses	in	those	5%-probability	worst	cases.	
Thus,	it	is	directly	proportional	to	the	area	of	the	density	function	for	those	5%	
worst	cases.	
	
The	CVaR	optimization	formulation	tries	to	minimize	the	risk	associated	with	
buying	a	portfolio	of	assets	by	minimizing	the	obtained	CVaR	at	a	certain	percentile	
(%),	according	to	different	returns	associated	with	several	scenarios.	
	
	
Given	a	portfolio	of	n	assets,	let	Xi	be	the	per-unit	amount	of	each	one:	

3MN

O

N8,

= 1	
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Let	s	=	1,…,S	be	the	different	scenarios	considered	for	the	evolution	of	the	price	of	
the	different	assets.	For	each	considered	scenario	s,	the	losses	per	stock	can	be	
calculated	as	the	product	of	the	per-unit	amount	times	the	loss	ris	for	each	asset	in	
each	scenario.	Hence,	the	total	losses	for	each	scenario	can	be	calculated	as:	

)P =3MN. RNP

S

N8,

	

	
Having	the	density	function	for	the	total	losses,	and	given	a	percentile,	the	VaR	is	

defined	as	the	value	of	the	density	function	at	that	specific	percentile	(a).	Typically,	
a	95%	percentile	is	used	(VaR95%).	As	mentioned,	the	CVaR	is	defined	as	the	mean	of	
losses	in	the	5%	(or	whatever	VaR)	tail	of	the	distribution	(Figure	12).	

 

Figure	12.	Histogram	of	a	losses	density	function	highlighting	VaR	and	CVaR	for	a	95%	percentile. 

The	CVaR	minimization	for	a	percentile	a	can	be	expressed	using	the	following	
expression:	

TUVWX = 	Y<Z[G\,^_,`a bUVWX +
1

1 − c
	d[YVf()P − UVWX, 0)]h	

	
Rockafellar	and	Uryasev	[28]	proved	that	this	CVaR	minimization	can	be	solved	by	
using	the	following	linear	optimization	problem:	

Y<Z[G\,^_,ia 'UVWj −
1

(1 − α) · S
·3nP

S

P8,

9	

s.t.	
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nP ≥3MN. RNP

O

N8,

− UVWX	o = 1,… , q	

3MN

O

N8,

= 1	

	
nP ≥ 0	;	MN ≥ 0	

	
This	methodology	can	be	applied	in	other	contexts	where	areas	below	some	curves	
must	be	minimized	or	maximized.	Particularly,	the	CVaR	model	can	be	adapted	to	
maximize	the	CC	in	a	set	of	hours,	as	explained	in	the	next	section,	because	the	final	
objective	is	to	minimize	the	area	below	the	net	load	curve	during	peak	hours.	

Application of CVaR Optimization to Capacity Credit Maximization  

The	application	of	the	CVaR	optimization	to	the	maximization	of	the	CC	for	storage	
facilities	can	be	understood	through	an	analogy	between	the	different	problems	to	
be	solved.	
	
On	the	one	hand,	as	abovementioned,	CVaR	minimization	can	be	expressed	through	
the	following	non-linear	expression:	

TUVWX = 	Y<Z[G\,^_,`P bUVWX +
1

1 − c
	d[YVf()P − UVWX, 0)]h	

	
On	the	other	hand,	trying	to	maximize	the	CC	is	equivalent	to	minimizing	the	net	
load	NL	for	the	H	peak	hours.	Minimizing	the	net	load	can	be	carried	out	through	a	
minimization	of	the	area	below	the	net	load-duration	curve	for	the	first	H	hours.	
This	area	can	be	minimized	as:	

rRsV* = 	Y<Ztuvw,^,x`y b()
∗
*+, +

1

1/8760
	d[YVf(()" − ()

∗
*+,, 0)]h	

	
Where,	as	shown	in	Figure	13	and	Figure	14,	NL*H+1	represents	the	net	load	level	at	
hour	H+1,	NLh	the	net	load	for	hour	h,	and	X	the	batteries	operating	decisions	
(subject	to	all	the	operational	and	technical	constraints	of	the	storage	system,	such	
as	chronology,	maximum	level	of	storage,	and	maximum	output).	
	
Hence,	we	can	make	an	analogy	between	both	problems	and	use	an	equivalent	
linear	problem	to	solve	the	CC	maximization.	In	this	analogy,	the	losses	for	each	
stock	are	analogous	to	the	net	load	of	the	system	after	the	storage	dispatch	for	every	
hour	has	been	determined.	
	
Scenarios	in	CVaR	minimization	will	be	substituted	by	hours	in	CC	maximization.	
Regarding	the	decision	variables,	unlike	what	happens	in	the	CVaR	formulation	in	
which	the	number	of	scenarios	is	limited,	the	number	of	possible	storage-
management	options	is	infinite	for	CC	maximization.	That	is	why	the	net	load	



Drivers of the Resource Adequacy Contribution of Solar and Storage for Florida Municipal Utilities │27	

variable	uses	only	one	sub-index	in	the	new	model	formulation,	instead	of	two	as	in	
the	losses	variables	for	the	CVaR	problem.	
	

Following	with	the	analogy,	the	confidence	level	a	will	correspond	to	the	ratio	of	
non-peak	hours,	that	is	(8760-H)/8760	(Figure	13).		
	

 
Figure	13.	Histogram	of	a	net	load	density	function	highlighting	net	load	in	the	last	peak	hour	and	CC	for	
H	of	peak	hours. 

	
	

 
Figure	14.	Maximizing	the	CC	with	the	LDC	method	is	equivalent	to	minimizing	the	area	below	the	net	
load	duration	curve	in	the	peak	net	load	hours. 

	

The	parallelism	between	both	formulations	is	summarized	in	Table	2.	
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Table	2.	Analogy	Between	CVaR	and	CC	Formulation.	

CVaR formulation CC formulation 

O.F.: Min CVaR O.F.: Max CC = Min Average Net Load for 
H peak hours 

VaRa Net Load for hour H+1 in the net load duration 
curve NL*H+1 

Confidence level a Ratio of non-peak hours (8760-H)/8760 
Scenarios s = 1,…,S Hours h = 1,…,8760 
Losses (Lij) Net load (NLh) 
Stock portfolio decisions Battery operation decisions 

	
Having	this	analogy	in	mind,	the	CC-maximization	problem	can	be	solved	using	an	
equivalent	linear	programming	problem,	as	presented	for	the	CVaR	minimization.	
This	model	is	presented	above	in	Section	2.2.	
	


